Parallel Sampling and Reconstruction with Permutation in Multidimensional Compressed Sensing
نویسندگان
چکیده
The advent of compressed sensing provides a new way to sample and compress signals. In this thesis, a parallel compressed sensing architecture is proposed, which samples a twodimensional reshaped multidimensional signal column by column using the same sensing matrix. Compared to architectures that sample a vector-reshaped multidimensional signal, the sampling device in the parallel compressed sensing architecture stores a smaller-sized sensing matrix and has lower computational complexity. Besides, the reconstruction of the multidimensional signal can be conducted in parallel, which reduces the computational complexity and time for reconstruction at the decoder side. In addition, when parallel sampling is not required but analog compressed sensing is desired, an alternative architecture proposed in this thesis, named parallel compressed sensing reconstruction architecture, can be used. In both proposed architectures, permutation is introduced and shown to enable the reduction of the required number of measurements for a given desired reconstruction error performance.
منابع مشابه
Permutation Enhanced Parallel Reconstruction with A Linear Compressive Sampling Device
In this letter, a parallel reconstruction architecture for compressed sensing is proposed. In this architecture, a measurement matrix is constructed from a block-diagonal sensing matrix and the sparsifying basis of the target signal. In this way, the projection of the signal onto the sparsifying basis can be divided into several segments and all segments can be reconstructed in parallel. Thus, ...
متن کاملUnmanned aerial vehicle field sampling and antenna pattern reconstruction using Bayesian compressed sensing
Antenna 3D pattern measurement can be a tedious and time consuming task even for antennas with manageable sizes inside anechoic chambers. Performing onsite measurements by scanning the whole 4π [sr] solid angle around the antenna under test (AUT) is more complicated. In this paper, with the aim of minimum duration of flight, a test scenario using unmanned aerial vehicles (UAV) is proposed. A pr...
متن کاملA Block-Wise random sampling approach: Compressed sensing problem
The focus of this paper is to consider the compressed sensing problem. It is stated that the compressed sensing theory, under certain conditions, helps relax the Nyquist sampling theory and takes smaller samples. One of the important tasks in this theory is to carefully design measurement matrix (sampling operator). Most existing methods in the literature attempt to optimize a randomly initiali...
متن کاملA novel Adaptive weighted Kronecker Compressive Sensing
Recently, multidimensional signal reconstruction using a low number of measurements is of great interest. Therefore, an effective sampling scheme which should acquire the most information of signal using a low number of measurements is required. In this paper, we study a novel cube-based method for sampling and reconstruction of multidimensional signals. First, inspired by the block-based compr...
متن کاملReordering for Better Compressibility
Compressed Sensing (CS) is a novel sampling paradigm that tries to take data-compression concepts down to the sampling layer of a sensory system. It states that discrete compressible signals are recoverable from sub-sampled data, when the data vector is acquired by a special linear transform of the original discrete signal vector. Distributed sampling problems especially in Wireless Sensor Netw...
متن کامل